62 research outputs found

    Innovation for biorefineries – Networks, narratives, and new institutions for the transition to a bioeconomy

    Get PDF
    The transition to a bioeconomy is dependent on transformative changes to technologies, organisations, and institutions, which jointly can be described as a socio-technical change. The thesis contributes to the understanding of how the transition is shaped by expectations on and collaborations for innovation forbiorefineries, which can produce chemicals, fuels, and materials needed in a bioeconomy.The thesis poses three research questions: i) what are the systemic characteristics of innovation for biorefineries? ii) how do collaborations and networks shape innovation for biorefineries? and iii) in what ways are expectations and institutions shaping pathways of innovation for biorefineries? These questions are answered with a mixed methods approach.Reorienting the socio-technical system for production and utilisation of chemicals, fuels, and materials towards a bioeconomy requires the overcoming of significant technological and institutional barriers. Though collaborations on innovation for biorefineries are needed to combine knowledge about technologies, materials, and markets they are costly and difficult. Expectations on biorefineries in the bioeconomy are divergent and conflictual. Acknowledging and resolving these conflicts is thus key to build effective and stable partnerships, which has proven to be difficult in the biorefinery field. Further, actors meet barriers to local transformative innovation in the global institutional context in which they are embedded. The thesis shows that transition initiatives are shaped by and dependent on institutional structures on multiple scales, but that opportunities exist for actors to build new networks which can enable the transition to a bioeconomy

    Plastic dinosaurs : Digging deep into the accelerating carbon lock-in of plastics

    Get PDF
    The continued expansion of plastics production all over the world entrenches modern societies and life styles deeper in the dependence on fossil resources. This research note develops the main aspects of the carbon lock-in in the plastics industry and how it extends into many aspects of contemporary life. With data collected from trade press and reports, we present insights of the investment trends in the plastics industry from the past decade. We show that among the twelve largest companies 88 new projects for production capacity increase and infrastructure expansion were announced between 2012 and 2019. We connect this increasing infrastructural lock-in to actions and strategies enacted by the industry to restrict regulations on the use of plastics and support specific consumer behaviour to uphold also an institutional and behavioural lock-in. The paper outlines the need for more extensive research on the plastics and petrochemical sectors, especially regarding data from Asian companies and activities in China in particular. We also point to areas of grave concern for new policy, aiming to reduce the high growth rate for the volumes of oil and gas that feed the industry as the current focus on plastic waste collection and recycling is insufficient

    Assessing the feasibility of archetypal transition pathways towards carbon neutrality – A comparative analysis of European industries

    Get PDF
    Analyses of the future for manufacturing and heavy industries in a climate constrained world many times focus on technological innovations in the early stages of the value chain, assuming few significant changes are plausible, wanted, or necessary throughout the rest of the value chain. Complex questions about competing interests, different ways of organising resource management, production, consumption, and integrating value chains are thus closed down to ones about efficiencies, pay-back times, and primary processing technologies. In this analysis, we move beyond this to identify archetypal pathways that span across value chains in four emissions intensive industries: plastics, steel, pulp and paper, and meat and dairy. The pathways as presented in the present paper were inductively identified in a multi-stage process throughout a four-year European research project. The identified archetypal pathways are i) production and end-use optimisation, ii) electrification with CCU, iii) CCS, iv) circular material flows, and v) diversification of bio-feedstock use. The pathways are at different stages of maturity and furthermore their maturity vary across sectors. The pathways show that decarbonisation is likely to force value chains to cross over traditional boundaries. This implies that an integrated industrial and climate policy must handle both sectoral specificities and commonalities for decarbonised industrial development.publishedVersio

    FrÄgestÀllningar i examensarbeten

    Get PDF
    För att klara examinationsmÄlen i civilingenjörsexamen (SFS 1993:100 bilaga 2) ska varje student visa förmÄga att med helhetssyn kritiskt, sjÀlvstÀndigt och kreativt identifiera, formulera och hantera komplexa frÄgestÀllningar. För att öka förstÄelsen för hur forskningsfrÄgan identifieras, formuleras och hanteras vid LTH har ett tjugotal examensarbetsrapporter frÄn olika institutioner granskats. Granskningen har utgÄtt frÄn rapporternas inledande och avslutande kapitel för att se om forskningsfrÄgan tydligt formuleras i inledningen och om den besvaras i slutsatserna. UtifrÄn det material vi har studerat och publicerad litteratur kan vi konstatera att det Àr ett allmÀnt problem att studenter pÄ masters-nivÄ överlag har liten vana vid att hantera komplexa frÄgestÀllningar. Det tycks finnas bristande kunskaper om vad vetenskaplighet/vetenskaplig metodik/vetenskaplig tradition innebÀr för vad som ska presenteras och vi kan konstatera att det bÄde pÄ LTH och i stort finns ett behov för ÄtgÀrder för att pÄ ett mer effektiv sÀtt trÀna studenter i detta. Att litteraturen inom detta omrÄde Àr begrÀnsad visar pÄ bÄde behovet men kanske ocksÄ svÄrigheter att identifiera precis hur detta kan göras. Vi identifierade detta som ett viktigt utvecklingsomrÄde för handledare av examensarbeten inom civilingenjörsutbildningarna pÄ LTH, som dock ocksÄ kan komma att behöva stöd av nya strukturer och systematiska ÄtgÀrder för att nÄ gemensamma mÄl för hela fakulteten

    Technological Innovation Systems for Biorefineries – A Review of the Literature

    Get PDF
    The concept of a bioeconomy can be understood as an economy where the basic building blocks for materials, chemicals, and energy are derived from renewable biological resources. Biorefineries are considered an integral part of the development toward a future sustainable bioeconomy. The purpose of this literature review is to synthesize current knowledge about how biorefinery technologies are being developed, deployed, and diffused, and to identify actors, networks, and institutions relevant for these processes. Several key findings can be obtained from the literature. First, investing more resources in R&D will not help to enable biorefineries to cross the ‘valley of death’ toward greater commercial investments. Second, while the importance and need for entrepreneurship and the engagement of small and medium-sized enterprises (SMEs) is generally acknowledged, there is no agreement how to facilitate conditions for entrepreneurs and SMEs to enter the field of biorefineries. Third, visions for biorefinery technologies and products have focused very much on biofuels and bioenergy with legislation and regulation playing an instrumental role in creating a market for these products. But there is a clear need to incentivize non-energy products to encourage investments in biorefineries. Finally, policy support for biorefinery developments and products is heavily intertwined with wider discussions around legitimacy and social acceptance. The paper concludes by outlining current knowledge gap

    Produktion av kvÀvegödsel baserad pÄ förnybar energi

    Get PDF
    MineralkvĂ€vegödsel Ă€r en av förutsĂ€ttningarna för de höga skördenivĂ„er som uppnĂ„tts i det industrialiserade, moderna jordbruket. I Sverige finns idag ingen inhemsk produktion av mineralkvĂ€vegödsel, utan hela efterfrĂ„gan tillgodoses med import frĂ„n utlandet. Produktionen Ă€r idag baserad pĂ„ fossila resurser, vilka anvĂ€nds bĂ„de som rĂ„vara för produktionen och som energi för att driva processerna. Vi Ă€r alltsĂ„ beroende av utlĂ€ndska fossila resurser – som brĂ€nsle och mineralgödsel – för vĂ„r livsmedelsproduktion. Möjligheter finns dock att producera kvĂ€vegödsel med pĂ„ förnybara resurser, vilket banar vĂ€g för en mer hĂ„llbar produktion av livsmedel och bioenergi. Denna rapport syftar till att beskriva och jĂ€mföra olika tekniska alternativ för produktion av kvĂ€vegödsel baserad pĂ„ förnybara energikĂ€llor. Rapporten presenterar produktionskostnader som berĂ€knats utifrĂ„n tekno-ekonomiska modeller av produktionsprocesserna, miljöpĂ„verkan av förnybara gödselmedel enligt ett flertal livscykelanalyser, samt en översikt av potentiella nyttor och risker. Rapporten kan lĂ€sas som en förstudie, vilken kan anvĂ€ndas som informationsunderlag för aktörer och intressenter som har intresse av att stödja utvecklingen av förnybara gödselmedel. Resultaten visar att kostnaden för att producera förnybara kvĂ€vegödselmedel varierar beroende pĂ„ vald teknik och tillverkningsskala. Bland de förnybara alternativen som studerades, gav förgasning av biomassa den lĂ€gsta produktionskostnaden. För detta alternativ berĂ€knades produktionskostnaden till 11-14 kr/kg N, vilket kan jĂ€mföras med dagens pris pĂ„ ca 10 kr/kg N. Förgasning av biomassa Ă€r dock Ă€nnu inte en fullt kommersiellt tillgĂ€nglig teknik, utan en framtida möjlighet. Studien visar ocksĂ„ att det finns alternativ som kan förverkligas inom en snar framtid, dĂ€r all teknik för kvĂ€vegödsel baserad pĂ„ förnybar energi finns tillgĂ€nglig. Det Ă€r ”bara” att sĂ€tta ihop de olika delarna som behövs. Dessa alternativ uppskattas bli 2-3 gĂ„nger sĂ„ dyra som dagens kvĂ€vegödselmedel. Ett av de mest lovande alternativen Ă€r att göra urea av biogas, vilket uppskattas kosta ungefĂ€r 20 kr/kg N. Ett annat alternativ Ă€r att producera ammoniumnitrat frĂ„n vindkraft, vilket berĂ€knas kosta runt 24 kr/kg N. De olika tekniska alternativen har sina för- och nackdelar. Vid en jĂ€mförelse mellan processer som bygger pĂ„ vindkraftsbaserad elektrolys och reformering av biogas Ă€r produktionskostnaderna liknande. Biogasalternativet har dock en lĂ€gre investeringskostnad och lĂ€gre andel fasta kostnader. Biogas Ă€r ocksĂ„ en mindre intermittent energikĂ€lla, vilket Ă€r en klar fördel jĂ€mfört med vindkraft som blir starkt beroende av ett vĂ€tgaslager eller det regionala energisystemet som utjĂ€mning för variationer i elproduktion. Att vara beroende av det regionala energisystemet innebĂ€r större kostnadsrisk och det blir Ă€ven viktigt nĂ€r klimatpĂ„verkan berĂ€knas hur övrig el produceras i systemet. Vad gĂ€ller val av slutprodukt kan vi konstatera att ammoniak Ă€r billigast att producera. Vi har dock ingen infrastruktur eller vana av att hantera vattenfri ammoniak i Sverige. Det betyder att distribution, lagring, hantering och anvĂ€ndning skulle krĂ€va mĂ„nga extra investeringar. DĂ„ koncentrerad ammoniak Ă€r miljö- och hĂ€lsofarligt Ă€r hantering av ammoniak ocksĂ„ kopplat till stora risker vid lĂ€ckage. I jĂ€mförelse mellan ammoniumnitrat och urea, uppskattas produktionskostnaderna bli relativt likvĂ€rdiga, med en liten fördel för urea. Urea krĂ€ver dock en koldioxidkĂ€lla för produktionen, vilket gör att det inte Ă€r ett lĂ€mpligt val att kombinera med vindkraftsbaserade processer. Ammoniumnitrat Ă€r ocksĂ„ förknippat med stora risker vid lagring och distribution dĂ„ det Ă€r mycket brandfarligt. Ett av syftena för att producera kvĂ€vegödsel baserad pĂ„ förnybar energi Ă€r att minska utslĂ€pp av vĂ€xthusgaser frĂ„n odling. Inom ramen för detta projekt gjordes en sammanstĂ€llning av resultat frĂ„n tidigare genomföra livscykelanalyser. UtslĂ€pp av vĂ€xthusgaser för produktion av kvĂ€vegödsel baserad pĂ„ förnybar energi visade sig variera mellan 0,1 – 1,5 kg CO2-ekv/kg N, vilket kan jĂ€mföras med produktion baserad pĂ„ fossil energi som varierar mellan 2,2 – 14,2 kg CO2-ekv/kg N. AlltsĂ„ ger grönt kvĂ€ve en avsevĂ€rd klimatnytta jĂ€mfört med fossila alternativ. Att anvĂ€nda förnybar energi till kvĂ€vegödselproduktion utgör alltsĂ„ en möjlighet att utnyttja förnybara resurser pĂ„ ett nytt, klimateffektivt sĂ€tt, samtidigt det minskar jordbruksproduktionen beroende av den fossila energimarknadens instabilitet. VĂ„r samlade bedömning Ă€r att pĂ„ kort sikt verkar biogas till urea som ett mycket lovande alternativ som bör studeras vidare. PĂ„ lĂ€ngre sikt Ă€r förgasning av biomassa mer intressant, förutsatt att tekniken för förgasning lyckas slĂ„ igenom pĂ„ kommersiell skala. Även om det finns aktörer som visar intresse för förnybara kvĂ€vegödselmedel finns Ă€nnu ingen marknad för dessa produkter. Att skapa efterfrĂ„gan hos konsumenter, samt att driva pĂ„ utvecklingen hos producenter genom olika typer att styrmedel Ă€r viktiga aspekter som bör studeras vidare

    Petrochemicals and Climate Change : Tracing Globally Growing Emissions and Key Blind Spots in a Fossil-Based Industry

    Get PDF
    With the risk of climate breakdown becoming ever more pressing as the world is on track for 2.7 degrees warming, pressure is increasing on all sectors of the economy to break with fossil fuel dependence and reduce greenhouse gas (GHG) emissions. In this context, the chemical industry and the production of important basic chemicals is a key sector to consider. Although historically a driver of economic development, the sector is highly dependent on fossil resources for use as both feedstock and fuel in the production of as well organic as inorganic chemicals. The chemical industry demands both petroleum fractions and natural gas. Petroleum fractions such as naphtha and petroleum gases are used as feedstocks for building block chemicals and polymers (e.g., benzene and polyethylene), while natural gas is used for methanol and ammonia. Indeed, the sector is associated with both large process emissions as well as energy related emissions. Our results demonstrate that in 2020 direct GHG emissions from the petrochemical sector amounted to 1.8 Gt CO2eq which is equivalent to 4% of global GHG emissions. Indirect GHG emissions resulting from the activities in other industries supplying inputs for the petrochemical industry accounted for another 3.8 Gt CO2eq. The petrochemical industry is thus associated with a total of 5.6Gt CO2eq of GHG emissions, equivalent to ~10% of global emissions. Over the past 25 years, emissions associated with petrochemicals have doubled and the sector is the third most GHG emitting industry. This increase is fueled by large growth of petrochemicals production as well as growth in regions with high indirect emissions, i.e., in energy systems with high dependence on coal and other fossil fuels. Over the past decades, the industry has grown rapidly in the Asia-Pacific region especially in China which in 2020 was the source for about 47% of global GHG emissions associated with petrochemicals. USA accounts for 6% of the emissions from the industry and Europe for 5%. The BRIC group of countries, which except for China also includes Brazil, India, and Russia, currently accounts for 57% of GHG emissions from petrochemicals, showing that the emissions from this sector are more geographically clustered in these countries than emissions from other sectors.Proper disaggregated and comparative analyses of key products is currently not possible. Data confidentiality and a high reliance on proxy data limit the reliability of LCA and stands in the way of mapping climate impacts. A strong demand of chemicals life cycle inventory (LCI) data for environmental footprinting has resulted in a general increase of chemicals data in many LCI databases, but the energy demands both for heat and electricity are typically not well-documented for production processes outside the main bulk chemicals. If incinerated at end-of-life plastics and other chemical products will emit embodied carbon as CO2 and if landfilled there is a risk of slow degradation with associated methane emissions. Global estimates based on most LCA datasets will thus significantly underestimate emissions from the chemical industry.The multitude of value chains dependent on the petrochemical industry makes it an important contribution to life cycle emissions in many sectors of the economy. Petrochemicals are used as an intermediate input in many industries and the emissions associated with them thus propagate through the economy, with final demand in manufacturing industries and services being associated with the largest shares of emissions from chemicals. The impacts and emissions downstream in value chains is however poorly understood and disclosure by petrochemical producers is lacking and insufficient. While disclosure of emissions in the industry has increased over the past decades, it remains partial and shows inconsistencies over time. This is due to issues such as different reporting standards, large discrepancies in the extent of disclosure as well as various other gaps and inconsistencies in reporting. This holds for all scopes, although Scope 1 emissions are better covered. Only some firms disclose information about downstream Scope 3 emissions including end-of-life for final products. Emission targets set by firms in the industry do not correspond to the challenge of large and rapid emission reductions. Many targets include only parts of operations and transparent, standardized target-setting is lacking. Reported emission reduction initiatives to achieve targets are far from sufficient focusing mainly on efficiency improvements or insubstantial parts of the operation. Shifting to renewable energy is a key for rapid emission reductions in the industry, yet few firms report strategic targets for this shift. As the industry has historically been closely linked to and integrated with the energy sector it holds a great potential for engaging with the deployment and adoption of renewable energy, although this implies a transformation of the knowledge base and resource allocation in the industry which is still focused on fossil fuels. Roadmaps and scenario analyses show that apart from a shift to renewable energy, a transformation of the industry relies on the deployment of key technologies which are not yet fully developed. This includes new technologies for hydrogen production, e.g., electrolytic (green) hydrogen or hydrogen produced with carbon capture and storage (CCS). New chemical synthesis pathways based on captured carbon, so called carbon capture and utilization (CCU) is also highlighted, but the massive demand for renewable energy associated with this pathway is a significant barrier to its adoption in the near term. The report shows how efficiency improvements continues to be the main focus for reducing the climate impact of petrochemicals, but that this is a completely inadequate approach for achieving the emissions reductions necessary in the coming decades. Breakthrough technologies are unlikely to be deployed at a rate consistent with international climate targets, and there is a great risk in relying on the promises of technologies which are yet to be proven at scale. The large knowledge gaps that remain are key barriers for effective governance of the transition

    Petrochemical transition narratives : selling fossil fuel solutions in a decarbonizing world

    Get PDF
    Being integral to the fossil-based energy order and as a key driver of multiple and intersecting ecological crises, the petrochemical industry faces increasing pressures to transform. This paper examines how major petrochemical companies navigate these pressures. Drawing from literatures on discursive power, narratives, and neoGramscian political economy, we introduce the concept of narrative realignment as a nuanced iteration of corporate discursive power that reframes problems of and solutions to green transitions. Specifically, we identify and explore common transition-related narratives, analysing climate and sustainability communications from the largest producers in the petrochemical sector. We argue that these strategic narratives portray the petrochemical industry as key to a successful transition and fend off criticisms by reducing them to misunderstandings. This framing works to reduce pressures for deep mitigation while repositioning the industry as part of the solution. Building on these findings, we demonstrate how petrochemical transition narratives relate to but also diverge from the position of fossil fuel extractors. Despite relying on fossil feedstock and being solidly placed in the fossil economy, petrochemical majors increasingly focus on repositioning themselves proactively as transition enablers. The argument illustrates the work of downstream actors to legitimize the existing energy order

    Petrochemicals and climate change: Powerful fossil fuel lock-ins and interventions for transformative change

    Get PDF
    With the risk of climate breakdown, pressure is increasing for all sectors of the economy to break with fossil fuel dependence and reduce greenhouse gas emissions. In this context, the chemical industry requires more focused attention as it uses more fossil-fuel based energy than any other industry and the production of chemicals is associated with very large emissions. Beyond the climate crisis, the chemical industry significantly impacts several critical dimensions of sustainability, including the planetary boundaries for novel entities, biosphere integrity, and ocean acidification. In this report, we focus on the petrochemical sector, which represents the largest share of the chemicals industry and is generally understood to refer to the part of the industry that relies on fossil-fuel feedstocks from oil, gas, and coal. The petrochemicals sector produces chemicals mainly used for plastics and fertilisers, but the products also end up in paints, pharmaceuticals, pesticides, and other applications. This report provides a critical exploration of the petrochemical sector to strengthen awareness of its relevance to the climate crisis and to provide tools and recommendations for decision-makers in different domains to initiate, support, and accelerate much-needed transformation. The report highlights the rapid expansion of the petrochemical sector as well as the range and growth of economic, infrastructural, and political interlinkages with the fossil fuel extraction sector. It argues that these developments and dynamics are crucial to understanding pathways, strategies, and interventions for a low-carbon transition for petrochemicals

    A European industrial development policy for prosperity and zero emissions

    Get PDF
    The objective of this paper is to outline and discuss the key elements of an EU industrial development policy consistent with the Paris Agreement. We also assess the current EU Industrial Strategy proposal against these elements. The “well below 2 °C” target sets a clear limit for future global greenhouse gas emissions and thus strict boundaries for the development of future material demand, industrial processes and the sourcing of feedstock; industry must evolve to zero emissions or pay for expensive negative emissions elsewhere. An industrial policy for transformation to net-zero emissions must include attention to directed technological and economic structural change, the demand for emissions intensive products and services, energy and material efficiency, circular economy, electrification and other net-zero fuel switching, and carbon capture and use or storage (CCUS). It may also entail geographical relocation of key basic materials industries to regions endowed with renewable energy. In this paper we review recent trends in green industrial policy. We find that it has generally focused on promoting new green technologies (e.g., PVs, batteries, fuel cells and biorefineries) rather than on decarbonizing the emissions intensive basic materials industries, or strategies for handling the phase-out or repurposing of sunset industries (e.g., replacing fossil fuel feedstocks for chemicals). Based on knowledge about industry and potential mitigation options, and insights from economics, governance and innovation studies, we propose a framework for the purpose of developing and evaluating industrial policy for net-zero emissions. This framework recognizes the need for: directionality; innovation; creating lead markets for green materials and reshaping existing markets; building capacity for governance and change; coherence with the international climate policy regime; and finally the need for a just transition. We find the announced EU Industrial Strategy to be strong on most elements, but weak on transition governance approaches, the need for capacity building, and creating lead markets
    • 

    corecore